Quantum fluctuations in iron-pnictide superconductor BaFe$_2$(As$_{1-x}$P$_x$)$_2$

LEI SHU, Z. F. DING, J. ZHANG, C. TAN, K. HUANG, Fudan University, Shanghai, China, L. LIU, S. CHEUNG, Y. J. UE-MURA, Columbia University, D. E. MACLAUGHLIN, University of Riverside, O. O. BERNAL, California State University, Los Angeles, P.-C. HO, California State University, Fresno, D. HU, Chinese Academy of Sciences, P.C. DAI, Rice University — Muon-spin-relaxation/rotation (μSR) experiments were performed on single crystals of iron-pnictide superconductors BaFe$_2$(As$_{1-x}$P$_x$)$_2$ ($x = 0.28, 0.30$, and 0.33). Our preliminary results reveal that the static muon relaxation rate from ZF-μSR measurements is temperature independent through T_c, suggesting that time reversal symmetry is preserved in the superconducting state. Above T_c, the field dependence of muon relaxation rate shows NFL behaviors for optimal composition $x = 0.3$. A maximum of zero temperature penetration depth at $x = 0.3$ is also observed.

1This work was supported by Chinese NSF, grant 1147060, US NSF, grant DMR-1506677 and DMR-1105380.

Lei Shu
Fudan University