Probing in-plane anisotropy and interlayer interactions in ReS$_2$ and ReSe$_2$ by Raman spectroscopy

ETIENNE LORCHAT, GUILLAUME FROEHLICHER, STÉPHANE BERCIAUD, IPCMS (CNRS - Université de Strasbourg) — We address the intriguing Raman response of rhenium disulfide (ReS$_2$) and rhenium diselenide (ReSe$_2$). These layered semiconductors belong to the family of transition metal dichalcogenides and exhibit significant in-plane anisotropy and can be represented as a distorted 1T-phase (octahedral), with considerably lower symmetry than the more extensively studied 2H-phase (trigonal prismatic) compounds based on molybdenum or tungsten. Nevertheless, we will demonstrate that the low-frequency rigid layer vibrational modes of N-layer ReS$_2$ and ReSe$_2$ can, on the one hand, be described using a linear chain model but, on the other hand, make it possible to directly probe the in-plane anisotropy and to determine the crystal orientation. Since in-plane anisotropy also has a direct impact on the optical and electron transport properties, our work opens avenues for engineering novel opto-electronic devices relying on ReS$_2$ and ReSe$_2$.

Guillaume Froehlicher
IPCMS (CNRS - Université de Strasbourg)

Date submitted: 12 Nov 2015

Electronic form version 1.4