Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

Doping-induced Charge-Density-Wave ATSUSHI NOMURA, KAZUHIKO YAMAYA, SHIGERU TAKAYANAGI, KOICHI ICHIMURA, TORU MATSUURA, SATOSHI TANDA, Hokkaido University, HOKKAIDO UNIVERSITY TEAM — Doping is a useful method for searching new characters in solids, as we can see in the discoveries of impurity semiconductors and high-temperature superconductors. If a Charge-Density-Wave (CDW) is induced in materials which do not exhibit a CDW, new CDW properties might be brought there. TaSe\textsubscript{3} exhibits no CDW transition but a superconductivity transition at about 2 K while it has a quasi-one-dimensional chain structure as well as typical CDW conductors, NbSe\textsubscript{3}, TaS\textsubscript{3}, and NbS\textsubscript{3}. Therefore, TaSe\textsubscript{3} is one of the suitable materials for the induction of a CDW by doping, and we tried to induce a CDW in TaSe\textsubscript{3} by doping Cu. Cu concentration was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The high Cu concentration was consistent with the high value of residual resistance \((R(4.5\,\text{K})/(R(280\,\text{K}) - R(4.5\,\text{K})))\). Single-crystal X-ray diffraction pattern (XRD) showed an expansion of the c-axis in Cu-doped TaSe\textsubscript{3}. The temperature dependence of the resistivity showed the anomaly at 80-100 K in Cu-doped TaSe\textsubscript{3}, which was never observed in pure TaSe\textsubscript{3}. These results suggest that the Cu-doping induces a CDW. We will discuss the relation between the resistivity anomaly and superconductivity.

Atsushi Nomura
Hokkaido University

Date submitted: 05 Nov 2015