MAR16-2015-003659

Abstract for an Invited Paper for the MAR16 Meeting of the American Physical Society

Open-ended projects in undergraduate optics and lasers courses CHAD HOYT, Bethel University

This talk will describe the format and experience of undergraduate Lasers and Optics courses at Bethel University. The courses, which include a rigorous lecture portion, are built on open-ended research projects that have a novel aspect. They begin with four weeks of small student groups rotating between several standard laser and optics laboratory exercises. These may include, for example, alignment and characterization of a helium neon laser and measurements with a Michelson interferometer or a scanning Fabry-Pérot optical cavity. During the following seven weeks of the course, student groups (2-4 people) choose and pursue research questions in the lab. Their work culminates in a group manuscript typeset in IAT_EX and a twenty-minute presentation to the class. Projects in the spring, 2014 Optics course included experiments with ultracold lithium atoms in a magneto-optical trap, optical tweezers, digital holography and adaptive optics. Projects in the spring, 2015 Lasers course included ultrafast optics with a mode-locked erbium fiber laser, quantum optics, surface plasmon lasers (led by Nathan Lindquist) and a low-cost, near-infrared spectrometer. Several of these projects are related to larger scale, funded research in the physics department. The format and experience in Lasers and Optics is representative of other upper-level courses at Bethel, including Fluid Mechanics and Computer Methods. A physics education research group from the University of Colorado evaluated the spring, 2015 Lasers course. They focused on student experimental attitudes and measurements of student project ownership.