Systematic investigation of chemical substitution in BaSnO$_3$ using the combinatorial approach1 ICHIRO TAKEUCHI, JONGMOON SHIN, SEUNGHUN LEE, XIAOHANG ZHANG, H. M. IFTEKHAR JAIM, Dept. of Materials Science and Engineering, University of Maryland, SE-YOUNG JEONG, Dept. of Cogno-Mechatronics Eng., Pusan National University — BaSnO$_3$ has been regarded as a possible material for photo-catalysis, dielectric capacitors, and transparent conductors. We are systematically investigating the effect of chemical substitution for A and B sites in BaSnO$_3$ using a high-throughput methodology. We have thus far investigated the effect of substituting La and Sr for the Ba-site and Pb and Bi for the Sn-site. The composition spread films were prepared on MgO, SrTiO$_3$ and LaAlO$_3$ using combinatorial pulsed laser deposition. The lattice parameters and band-gap energies were found to continually change as a function of the concentration of each substitutional dopant. We find that the band gap can be tuned from 2.8 eV for BaSn$_{0.05}$Pb$_{0.95}$O$_3$ to 4.5 eV for Ba$_{0.05}$La$_{0.95}$SnO$_3$. Especially for Ba$_{1-x}$La$_x$SnO$_3$ with x in the range of $0.05 < x < 0.5$, we consistently observe resistivity as low as 0.23 mΩcm at room temperature while maintaining optical transparency with a typical bandgap of ~4 eV. The effect of crystalline defects on electrical properties will also be discussed.

1This project is funded by AFOSR.

Ichiro Takeuchi
Dept. of Materials Science and Engineering, University of Maryland

Date submitted: 05 Nov 2015

Electronic form version 1.4