Neutron scattering study of the freezing of water near a cupric oxide surface1 J. TORRES, Z. N. BUCK, F. Z. ZHANG, T. CHEN, R. A. WINHOLTZ, H. KAISER, H. B. MA, H. TAUB, U. Mo., M. TYAGI, NIST — Oscillating heat pipes (OHP) offer promising two-phase heat transfer for a variety of applications, including cooling of electronic devices.2 Recently, it has been shown that a hydrophilic CuO coating on either the evaporator or condenser sections of a flat-plate OHP can significantly enhance its thermal performance.3 This finding has motivated us to assess the strength of the CuO/H\textsubscript{2}O interaction by investigating the freezing behavior of H\textsubscript{2}O in proximity to a CuO surface. Using the High-Flux Backscattering Spectrometer at NIST, we have measured the intensity of neutrons scattered elastically from a well-hydrated sample of CuO-coated Cu foils that mimic the oxide surfaces in a flat-plate OHP. We observe abrupt freezing of bulk-like H\textsubscript{2}O above the CuO surface at 270 K followed by continuous freezing of the interfacial H\textsubscript{2}O down to 265 K. This freezing behavior is qualitatively similar to that found for water near a zwitterionic single-supported bilayer lipid membrane.3 Further studies are planned to compare the diffusion coefficients of the interfacial water for the coated and uncoated OHPs.2 F. Z. Zhang \textit{et al}., submitted to J. Heat Transfer.3 M. Bai \textit{et al}, Europhys. Lett. 98, 48006 (2012); Miskowiec \textit{et al}, Europhys. Lett. 107, 28008 (2014).

1Supported by NSF Grant Nos. DMR-0944772 and DGE-1069091.