Abstract Submitted for the MAR16 Meeting of The American Physical Society

Electromotive force and current in a superconducting solenoid with limited length induced by a bar magnet and a monopole LIANXI MA, Blinn College - Bryan — The magnetic flux $\Phi_{\rm B}$, electromotive force, EMF, and current $I_{\rm in}$, induced by a moving magnetic bar and an imaginary magnetic monopole in a superconducting solenoid of multiple turns and length L, are numerically calculated. The magnetic field of the bar magnet is approximated with the magnetic field along z axis of a solenoid with length l and radius a and current I, while the magnetic field of the monopole is supposed to be inversely proportional to r^2 . Calculations show that, for a bar magnet, $\Phi_{\rm B}$ and $I_{\rm in}$ essentially saturate when the bar moves inside superconducting solenoid, so EMF is zero while $I_{\rm in}$ is constant. EMF is only induced when the bar enters and exits the solenoid and $I_{\rm in}$ is zero after the bar leaves the solenoid. For a magnetic monopole, $\Phi_{\rm B}$ is discontinuous (from positive maximum to negative maximum) when the it moves through each turn of the superconducting solenoid, but EMF caused by $d\Phi_{\rm B}/dt$ is continuous while the EMF induced by the a moving monopole is a delta function (moving monopole produces a ring-shaped E field). The total EMF_{Tot} in solenoid is the superposition of EMF of each turn of coil and the plateau appears. The current $I_{\rm in}$ continues to grow while the monopole leaves the solenoid.

¹Thanks to Dr. Liancun Zheng and Mr. Lin Liu for verifying my calculation

Lianxi Ma Blinn College - Bryan

Date submitted: 07 Nov 2015 Electronic form version 1.4