Quasiparticle and optical band gaps of Sr$_{n+1}$Ti$_n$O$_{3n+1}$ from *ab-initio* many-body perturbation theory

SEBASTIAN E REYES-LILLO, TONATIUH RANGEL, Molecular Foundry, LBNL; Dept. of Physics, UC Berkeley; FABIEN BRUNEVAL, Molecular Foundry, LBNL; Dept. of Physics, UC Berkeley; CEA, DEN, SRMP; JEFFREY B NEATON, Molecular Foundry, LBNL; Dept. of Physics, UC Berkeley; Kavli ENSI — The Ruddlesden Popper homologous series Sr$_{n+1}$Ti$_n$O$_{3n+1}$ provides a unique opportunity to study the effect of dimensionality and confinement on the band gap and absorption spectrum of the complex oxide SrTiO$_3$. In this work, we use many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation (BSE) approach to study the electronic and optical properties of Sr$_{n+1}$Ti$_n$O$_{3n+1}$. We find that our GW/BSE direct and indirect band gaps are in excellent agreement with measured direct and indirect optical gaps. We discuss technical aspects of the calculations such as convergence and starting-point dependence, and compare to higher levels of theory. In addition, we find a relatively large exciton binding energy of 500 meV for Sr$_2$TiO$_4$ ($n = 1$). We explore the role of structural distortions and epitaxial strain in the properties of the localized exciton. Our work suggests that layered structures can provide a viable route for the design of complex oxide materials with desirable optoelectronic properties. This work is supported by DOE.

Sebastian Reyes-Lillo
Lawrence Berkeley Natl Lab

Date submitted: 05 Nov 2015