Abstract Submitted for the MAR16 Meeting of The American Physical Society

Metal-Insulator Transition and Weak Localization in Oxygen Vacancy Doped BaSnO_{3- δ}ThinFilms¹ KOUSTAV GANGULY, ABHINAV PRAKASH, JONG SEOK JEONG, K. ANDRE MKHOYAN, BHARAT JALAN, CHRIS LEIGHTON, University of Minnesota — We present detailed temperature-dependent electronic transport in oxygen vacancy doped BaSnO₃ films grown on MgO(001), LaAlO₃(001), and GdScO₃(110) using high pressure oxygen sputter deposition. Various modes of high-resolution X-ray diffraction and scanning transmission electron microscopy confirm phase-pure, close to stoichiometric, smooth, epitaxial BaSnO₃(001). [1] As-grown films are insulating, but can be made conductive with *n*-type carriers via vacuum annealing, resulting in 300 K Hall mobilities up to 35 cm²V⁻¹s⁻¹ at 510¹⁹ carriers per cm³. [1] Film thickness, reduction temperature, and substrate (*i.e.* lattice mismatch) have been systematically varied, enabling study of the insulator-metal transition, and, in particular, 2D weak localization at low temperatures. The results provide significant insight into the active transport mechanisms in BaSnO₃ films. [1] Ganguly *et al.* APL Materials 3, 062509 (2015).

¹Work supported by NSF through the UMN MRSEC.

Koustav Ganguly University of Minnesota

Date submitted: 07 Nov 2015

Electronic form version 1.4