Abstract Submitted for the MAR16 Meeting of The American Physical Society

Suppression of charge and spin order in confined NdNiO₃ layers ANKIT DISA, DIVINE KUMAH, ANDREI MALASHEVICH, SOHRAB ISMAIL-BEIGI, FRED WALKER, CHARLES AHN, Yale University — Atomic-layer synthesis allows one to study and control the complex phase behavior correlated systems by controllably modifying dimensionality and interfacial constraints. To this end, the rare-earth nickelates ($RNiO_3$) embody a remarkable model system, as exhibited by the bulk metal-insulator and paramagnetic-antiferromagnetic ordering transitions, which are sensitive to structural and electronic conditions. We present evidence from transport, x-ray absorption, and resonant x-ray scattering measurements of $NdNiO_3/NdAlO_3$ superlattices of a suppression of charge and spin order induced by interfacial confinement. We find that the spectroscopic signatures of charge localization and antiferromagnetic ordering remain for NdNiO₃ layers thicker than a single unit cell. The disappearance of ground state order in single $NdNiO_3$ layers is attributed to enhanced e_g orbital polarization from the interaction with the $NdAlO_3$ confining layers. We also observe a crossover region of thickness with no metal-insulator transition but distinct charge and spin ordering temperatures. These findings shed light on the interplay between competing ground states in nickelates and help guide efforts to controlling long-range order in such systems.

> Ankit Disa Yale University

Date submitted: 05 Nov 2015

Electronic form version 1.4