Proximity-induced Superconductivity in Topological Insulator/Superconductor Heterostructures

NITIN SAMARTH, Dept. of Physics, Penn State University, University Park PA 16802

The exploration of superconductivity in helical Dirac fermions is strongly motivated by scenarios for realizing exotic quantum states in condensed matter. Examples include Majorana modes [1] and supersymmetry [2]. Motivated by such proposals, we are pursuing the development of epitaxially grown heterostructures wherein we attempt to induce superconductivity in the surface states of a three dimensional topological insulator thin film when interfaced with both conventional [3] and unconventional [4] superconductors. This talk will provide an overview of the materials synthesis challenges in this context and discuss the picture of induced superconductivity (or lack thereof) that emerges from angle-resolved photoemission spectroscopy [3,4], point contact Andreev reflection spectroscopy [5] and tunneling spectroscopy. Work done in collaboration with A. Richardella, S.-Y. Xu, M. Z. Hasan, M. Gilbert, F.-C. Chou, G. Gu, W.-Q. Dai and Qi Li.


1Supported by ARO/MURI grant W911NF-12-1-0461