Abstract Submitted for the MAR16 Meeting of The American Physical Society

Impact of Gd³⁺ doping and glassing solvent deuteration on ¹³C **DNP at 5 Tesla¹** ANDHIKA KISWANDHI, Univ of Texas, Dallas, BIMALA LAMA, AMRIS/NHMFL, Univ of Florida, PETER NIEDBALSKI, MUDREKH GODERYA, Univ of Texas, Dallas, JOANNA LONG, AMRIS/NHMFL, Univ of Florida, LLOYD LUMATA, Univ of Texas, Dallas — Dynamic nuclear polarization (DNP) is a technique which can be used to amplify signals in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) by several thousand-fold. The most commonly available DNP system typically operates at the W-band field or 3.35 T, at which it has been shown that ¹³C NMR signal can be enhanced by deuteration and Gd^{3+} doping. In this work, we have investigated the applicability of these procedures at 5 T. Our results indicate that the deuteration of the glassing matrix still yields an enhancement of ¹³C DNP when 4-oxo-TEMPO free radical is used. The effect is attributed to the lower heat load of the deuterons compared to protons. An addition of a trace amount of Gd^{3+} gives a modest enhancement of the signal when trityl OX063 is used, albeit with a less pronounced relative enhancement compared to the results obtained at 3.35 T. The results suggest that the enhancement obtained via Gd³⁺ doping may become saturated at higher field. These results will be discussed using a thermodynamic model of DNP.

¹This work is supported by US Dept of Defense award no. W81XWH-14-1-0048 and Robert A. Welch Foundation grant no. AT-1877.

> Andhika Kiswandhi Univ of Texas, Dallas

Date submitted: 05 Nov 2015

Electronic form version 1.4