Atomic-scale investigation of grain boundary motion in graphene
DONGWOOK KIM, Seoul National University, YOUNGKUK KIM, The Makineni
Theoretical Laboratories, Department of Chemistry, University of Pennsylvania,
JISOOK IIM, EUJOON YOON, GUN-DO LEE, Seoul National University —
Grain boundaries (GBs) in graphene can migrate when irradiated by electron beams
from a transmission electron microscope (TEM). Here, we present an ab initio study
on the atomic scale mechanism for the GB motion with misorientation angle of 30
in graphene. From total energy calculations and energy barrier calculations, we
find that a Stone–Wales(SW)-type transformation can occur more easily near GBs
than in pristine graphene due to a reduced energy barrier. There are other cases of
migration which can be understood by other type of transformation, named evapo-
ration of a carbon dimer. We also find that a mismatch in the crystalline orientation
at GBs can drive the evaporation of a carbon dimer easily by greatly reducing the
respective overall energy barrier. After evaporation of the carbon dimer, the
GBs can be stabilized through a series of SW-type transformations that result in
GB motion. The GB motion induced by evaporation of the dimer is in excellent
agreement with recent TEM experiments.

Dongwook Kim
Seoul Natl Univ

Date submitted: 07 Nov 2015
Electronic form version 1.4