Abstract Submitted for the MAR16 Meeting of The American Physical Society

High $T_{\rm IMT}$ insulator-to-metal transition of the VO₂ films on AlN/Si substrate. TETIANA SLUSAR, JIN-CHEOL CHO, BONG-JUN KIM, HYUN-TAK KIM, MIT Center in ETRI — Electronical and structural properties of the VO₂ thin films are strongly affected by growth conditions and underlying substrate providing a flexibility of their functional parameters. We present a new VO₂/AlN/Si heterostructure, where VO₂ is characterized by an excellent insulatorto-metal transition (IMT) occurred at a higher temperature $T_{\rm IMT}$ than that typical for single crystals. Mentioned characteristics are associated with growth mechanism of the film and its epitaxial alignment with respect to the substrate. In particular, the $T_{\rm IMT}$ upshift in VO₂/AlN/Si is explained by a stable crystallographic configuration in the plane of the VO₂ film as well as a tensile deformation of a monoclinic *a*-axis formed by tilted and dimerized V⁴⁺-V⁴⁺, responsible for strong electron correlations. Moreover, proposed synergy of VO₂ and Si is able to make new results for advanced materials fabrication and development of switching devices of new generation.

> Tetiana Slusar MIT Center in ETRI

Date submitted: 06 Nov 2015

Electronic form version 1.4