Abstract Submitted for the MAR16 Meeting of The American Physical Society

DFT+U study of electronic structure and Curie temperature of A_2BReO_6 (A=Sr, Ca and B=Cr, Fe) ALEX LEE, CHRIS MARIANETTI, Applied Physics and Applied Math, Columbia University — Re-based double perovskites (DPs) have attracted much attention due to their high Curie temperature (T_C) and colossal magneto resistance with large potential for spintronic applications. Here we investigate the electronic and magnetic properties of the Re-based DPs A_2BReO_6 (A=Sr, Ca and B=Cr, Fe) using density functional theory + U (DFT+U) calculations. While monoclinic Ca₂CrReO₆ and Ca₂FeReO₆ (monoclinic) are insulating within GGA+U, tetragonal Sr₂CrReO₆ $(a^0a^0c^0)$ and Sr₂FeReO₆ $(a^0a^0c^-)$ remain metallic. We show that both on-site interaction U and octahedral tilting are critical to obtain the insulating phases. The $a^0 a^0 c^-$ -phase of Sr₂CrReO₆ is most stable and insulating with nonzero U, suggesting that the high quality Sr_2CrReO_6 film on STO substrate can be a semiconductor as reported in recent experiments. We explain that the insulator-to-metal transition (MIT) of Ca_2FeReO_6 at 140K is predominantly due to a structural phase transition which drives the insulating state. Curie temperatures of Re-based DPs are calculated using the classical Monte Carlo simulations based on the Heisenberg model.

> Alex Taekyung Lee Applied Physics and Applied Math, Columbia University

Date submitted: 06 Nov 2015

Electronic form version 1.4