Entanglement like properties in Spin-Orbit Coupled Ultra Cold Atom and violation of Bell like Inequality

SANKALPA GHOSH, RAHUL KUMAR, Physics Department, Indian Institute of Technology, Delhi, India — We show that the general quantum state of synthetically spin-orbit coupled ultra cold bosonic atom whose condensate was experimentally created recently (Y. J. Lin et al., Nature, 471, 83, (2011)), shows entanglement between motional degrees of freedom (momentum) and internal degrees of freedom (hyperfine spin). We demonstrate the violation of Bell-like inequality (CHSH) for such states that provides a unique opportunity to verify fundamental principle like quantum non-contextuality for commutating observables which are not spatially separated. We analyze in detail the Rabi oscillation executed by such atom-laser system and how that influences quantities like entanglement entropy, violation of Bell like Inequality etc. We also discuss the implication of our result in testing the quantum non-contextuality and Bell’s Inequality violation by macroscopic quantum object like Bose-Einstein Condensate of ultra cold atoms.

Sankalpa Ghosh
Physics Department, Indian Institute of Technology, Delhi, India

Date submitted: 06 Nov 2015