Possible observation of photon excitations in the quantum spin-ice Pr$_2$Zr$_2$O$_7$

YOSHIFUMI TOKIWA, TAKUYA YAMASHITA, DAIKI TERAZAWA, TAKAHITO TERASHIMA, Kyoto University, KENTA KIMURA, Osaka University, MARIO HALIM, SATORU NAKATSUJI, University of Tokyo, YUJI MATSUDA, Kyoto University — It has been theoretically shown that the ground state of spin-ice system with quantum fluctuations can be quantum spin liquid, where new elementary excitations, photon, emerge [1]. In the rare-earth pyrochlore, Pr$_2$Zr$_2$O$_7$, which contains spin-ice correlations with significant quantum fluctuations, the absence of magnetic ordering even at very low temperature suggests formation of quantum spin liquid state [2]. In order to examine the emergence of new exotic excitations, we have performed low-temperature thermal conductivity (κ) measurements of Pr$_2$Zr$_2$O$_7$. Interestingly, our data of κ/T shows a steep increase with decreasing temperature below 0.2K. Since the monopole density is negligibly small at such low temperature, the steep increase possibly indicates emergence of new elementary excitations. Anomalous magnetic-field dependence of κ/T observed below 0.2K further supports this possibility. [1] M. Hermele et al., Phys. Rev. B 69, 064404 (2004). [2] K. Kimura et al., Nature Commun. 4, 1934 (2013).