Full quantum theory of the chiral anomaly transport in a Weyl semimetal

WOO-RAM LEE, KWON PARK, Korea Inst for Advanced Study, KIAS TEAM — In relativistic field theory, the chiral anomaly means a violation of the number conservation of chiral fermions. In condensed matter physics, the chiral anomaly can be manifested in a Weyl semimetal as a negative magnetoresistance in the presence of parallel electric and magnetic fields. In this work, we use the Keldysh-Floquet Greens function formalism to develop a full quantum theory of the chiral anomaly transport, which can be valid in a broad range of both electric and magnetic field strengths.

The authors thank KIAS Center for Advanced Computation (CAC) for providing computing resources.