Abstract Submitted for the MAR16 Meeting of The American Physical Society

Can oxygen deficient $SmFeAsO_{1-x}$ be synthesized?: Unintentional incorporation of hydride ion at oxygen vacancy site YOSHINORI MURABA, Materials Research Center for Element Strategy, SOSHI IIMURA, Materials and Structures Laboratory, Tokyo Institute of Technology, SATORU MAT-SUISHI, HIDEO HOSONO, Materials Research Center for Element Strategy, Tokyo Institute of Technology — Hydrogen substitution and introduction of oxygen vacancy are effective electron doping methods for the LnFeAsO. However, their T_c vs e^{-} /Fe diagrams do not entirely overlap each other, while T_c vs lattice dimension relationships are very similar. These contradictions can be understood by assuming that unintentional hydrogen is incorporated into the oxygen vacancy. To examine the preferred electron-dopant species in LnFeAsO and the influence of the atmosphere during synthesis on the formation of $Ln\text{FeAsO}_{1-x}$, we try to synthesize the $SmFeAsO_{1-x}$ under three well-controlled atmosphere (H_2O , H_2 and H_2O - and H_2 free). Under H₂O and H₂ atmosphere, hydrogen were incorporated at oxygen sites as the hydride ion and $SmFeAsO_{1-x}H_x$ was formed. On the other hand, when H_2O and H₂ were removed from synthetic process, nearly stoichiometric SmFeAsO was formed. Furthermore, DFT calculations showed that H-substituted samples are more stable than oxygen deficient samples. These results strongly imply that the reported $Ln \text{FeAsO}_{1-x}$ was contaminated with unintentional hydrogen and $Ln \text{FeAsO}_{1-x} H_x$ was misidentified as $LnFeAsO_{1-x}$.

> Yoshinori Muraba Materials Research Center for Element Strategy

Date submitted: 06 Nov 2015 Electronic form version 1.4