Abstract Submitted for the MAR16 Meeting of The American Physical Society

The phase diagram and Bose metal in superconducting nanowires¹ TYLER MORGAN-WALL², HANNAH HUGHES³, NIKOLAUS HARTMAN⁴, NINA MARKOVIC⁵, Johns Hopkins University — We experimentally investigated the transport properties of thin, narrow superconducting aluminum nanowires as a function of magnetic field and temperature. We characterized the full superconducting phase diagram with respect to magnetic field and temperature, and show the onset of a flux-flow phase for certain values of temperature and magnetic field. The flux-flow resistance follows the Bardeen-Stephen model and it is shown that the resistance increases linearly with respect to magnetic field in this region of the phase diagram. In addition, we show the saturation to a non-zero finite resistance state below the normal state resistance for certain magnetic fields as the temperature decreases to zero.

¹This work is supported by NSF DMR-1507782. ²Current address: Institute for Defense Analyses ³Current address: University of Pennsylvania ⁴Current address: University of British Columbia ⁵Current address: Goucher College

> Nina Markovic Goucher College

Date submitted: 06 Nov 2015

Electronic form version 1.4