The phase diagram and Bose metal in superconducting nanowires

TYLER MORGAN-WALL2, HANNAH HUGHES3, NIKOLAUS HARTMAN4, NINA MARKOVIC5, Johns Hopkins University — We experimentally investigated the transport properties of thin, narrow superconducting aluminum nanowires as a function of magnetic field and temperature. We characterized the full superconducting phase diagram with respect to magnetic field and temperature, and show the onset of a flux-flow phase for certain values of temperature and magnetic field. The flux-flow resistance follows the Bardeen-Stephen model and it is shown that the resistance increases linearly with respect to magnetic field in this region of the phase diagram. In addition, we show the saturation to a non-zero finite resistance state below the normal state resistance for certain magnetic fields as the temperature decreases to zero.

1This work is supported by NSF DMR-1507782.
2Current address: Institute for Defense Analyses
3Current address: University of Pennsylvania
4Current address: University of British Columbia
5Current address: Goucher College

Nina Markovic
Goucher College

Date submitted: 06 Nov 2015

Electronic form version 1.4