Abstract Submitted for the MAR16 Meeting of The American Physical Society

Comparative study of water and carbon dioxide adsorption on $CuFeO_2$ and $CuFe_{1-x}Ga_xO_2$ highly epitaxial thin films¹ S. ROJAS², Instituto de Fisica, Pontificia Universidad Catolica de Chile, T. JOSHI, P. BORISOV³, D. LEDERMAN, Department of Physics and Astronomy, West Virginia University, Morgantown, A. L. CABRERA, Instituto de Fisica, Pontificia Universidad Catolica de Chile — Thermal programmed desorption (TPD) of CO_2 and H_2O from a 200 nm thick $CuFeO_2$ and 52 nm thick $CuFe_{1-x}Ga_xO_2$ delafossite surfaces was performed in a Ultra-high vacuum (UHV) chamber. The thin films with epitaxial quality were grown by Pulsed Laser Deposition (PLD) on Al_2O_3 (0001) substrates. The adsorption / desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide is preferentially chemisorbed by $CuFe_{1-x}Ga_xO_2$ over water and we observed the opposite behavior with regard to chemisorption of CO_2 and H_2O over $CuFeO_2$. Hydroxyls and metal carbonates were formed on the surface due to the chemisorption of H_2O and CO_2 . Arrhenius plots for CO_2 and H₂O desorption were done and activation energy for desorption were obtained.

¹supported by FONDECyT 1130372

²CONICyT Proyecto N4386/2015

³Supported by the WV Higher Education Policy Commission (grant HEPC.dsr.12.29), by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA (contract 2013-MA-2382) and WVU Shared Research Facilities

> Alejandro Cabrera Instituto de Fisica, Pontificia Universidad Catolica de Chile

Date submitted: 06 Nov 2015

Electronic form version 1.4