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Physical functionals are usually computed as solutions of variational problems or from solutions of partial differential equa-
tions, which may require huge computations for complex systems. Quantum chemistry calculations of ground state molecular
energies is such an example. Indeed, if x is a quantum molecular state, then the ground state energy E0(x) is the minimum
eigenvalue solution of the time independent Schrödinger Equation, which is computationally intensive for large systems.
Machine learning algorithms do not simulate the physical system but estimate solutions by interpolating values provided
by a training set of known examples {(xi, E0(xi)}i≤n. However, precise interpolations may require a number of examples
that is exponential in the system dimension, and are thus intractable. This curse of dimensionality may be circumvented by
computing interpolations in smaller approximation spaces, which take advantage of physical invariants. Linear regressions
of E0 over a dictionary Φ = {ϕk}k compute an approximation Ẽ0 as: Ẽ0(x) =

∑
k wkϕk(x), where the weights {wk}k are

selected to minimize the error between E0 and Ẽ0 on the training set. The key to such a regression approach then lies in the
design of the dictionary Φ. It must be intricate enough to capture the essential variability of E0(x) over the molecular states
x of interest, while simple enough so that evaluation of Φ(x) is significantly less intensive than a direct quantum mechanical
computation (or approximation) of E0(x). In this talk we present a novel dictionary Φ for the regression of quantum me-
chanical energies based on the scattering transform of an intermediate, approximate electron density representation ρx of the
state x. The scattering transform has the architecture of a deep convolutional network, composed of an alternating sequence
of linear filters and nonlinear maps. Whereas in many deep learning tasks the linear filters are learned from the training data,
here the physical properties of E0 (invariance to isometric transformations of the state x, stable to deformations of x) are
leveraged to design a collection of linear filters ρx ∗ ψλ for an appropriate wavelet ψ. These linear filters are composed with
the nonlinear modulus operator, and the process is iterated upon so that at each layer stable, invariant features are extracted:
ϕk(x) = ∥||ρx ∗ ψλ1 | ∗ ψλ2 | ∗ · · · ∗ ψλm∥, k = (λ1, . . . , λm), m = 1, 2, . . . The scattering transform thus encodes not only
interactions at multiple scales (in the first layer, m = 1), but also features that encode complex phenomena resulting from
a cascade of interactions across scales (in subsequent layers, m ≥ 2). Numerical experiments give state of the art accuracy
over data bases of organic molecules, while theoretical results guarantee performance for the component of the ground state
energy resulting from Coulombic interactions.
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