Abstract Submitted for the MAR16 Meeting of The American Physical Society

Mass Flux Measurements in Solid ⁴He¹ VALENTYN RUBANSKYI, YEGOR VEKHOV², ROBERT HALLOCK, Univ of Mass - Amherst — There has been considerable attention given to solid helium over the past decade. Our approach to study the solid has been to sandwich solid helium between two reservoirs of superfluid helium. With this approach, we found and explored the characteristics of mass flux that takes place from one reservoir to the other³. We observed flow that has the characteristics of one-dimensional conductivity⁴ and we have documented the effects that various concentrations of ³He impurity have on the temperature dependence of the flow⁵ These experiments continue and we will report on this work and new results that may be available.

¹Supported by NSF via DMR 12-05217

²Current address: Department of Materials Science and Engineering, Univ. of Maryland, College Park, MD.

³M.W. Ray and R.B. Hallock, Phys. Rev. Letters 100, 235301 (2008); 105, 145301 (2010); Phys. Rev. B 79, 224302 (2009).

⁴Ye. Vekhov and R.B. Hallock, Phys. Rev. Letters 109, 045303 (2012); Phys. Rev. B 90, 134511 (2014).

⁵Ye. Vekhov, W.J. Mullin and Hallock, Phys. Rev. Letters 113, 035302 (2014); Ye. Vekhov and R.B Hallock, Phys. Rev. B 92, 104509 (2015).

Robert Hallock Univ of Mass - Amherst

Date submitted: 06 Nov 2015

Electronic form version 1.4