Abstract Submitted for the MAR16 Meeting of The American Physical Society

Multi-orbits observed in superconducting Nb-doped Bi₂Se₃ BEN-JAMIN LAWSON, PAUL CORBAE, GANG LI, FAN YU, TOMOYA ASABA, COLIN TINSMAN, Univ of Michigan - Ann Arbor, YUNSHENG QIU, YEW SAN HOR, Missouri University of Science and Technology, LU LI, Univ of Michigan - Ann Arbor — Recently discovered superconducting niobium doped Bi₂Se₃ shows promise to realize new physical phenomenon including the coexistence of superconductivity and magnetic ordering and possibly topological superconductivity. To understand the new physics showcased in this system, a detailed knowledge of the electronic structure is needed. We present the first observation of quantum oscillations in the magnetization (the de Haas-van Alphen effect) of Nb-doped Bi₂Se₃. In the fully superconducting crystal, two distinct orbits are observed, in sharp contrast to Bi₂Se₃, Cu-doped Bi₂Se₃, and Sr-doped Bi₂Se₃. The multiple frequencies observed in our quantum oscillations, combined with our electrical transport studies, indicate the multi-orbit nature of the electronic state of Nb-doped Bi₂Se₃.

Benjamin Lawson Univ of Michigan - Ann Arbor

Date submitted: 06 Nov 2015 Electronic form version 1.4