Magnetotransport of Epitaxial Graphene on Hexagonal SiC Surface Grown with Metal Plate Capping1 KIBOG PARK, HAN BYUL JIN, SUNGCHUL JUNG, JUNHYOUNG KIM, Ulsan Natl Inst of Sci Tech, DONGHUN CHAE, WAN-SEOP KIM, JAESUNG PARK, Korea Research Institute of Standards and Science — High quality epitaxial graphene (EG) was grown on a Si-face hexagonal SiC substrate by capping the surface with a metal plate (Molybdenum, Tungsten) during UHV annealing. The growth temperature was ~ 950 degree C, significantly lower than the conventional UHV annealing. The crystallinity of EG film was examined with Raman spectrum measurements. Almost no D-peak and a large narrow 2D-peak ensure that a thin (mono- or bi-layer) EG film was grown with a negligible number of defects. The electrical properties of EG film were also characterized by performing magnetotransport measurements with Hall-bar structures. The carrier type was found to be n-type, the sheet carrier density be (3.6-9.2)$\times10^{12}$/cm2, and the Hall mobility be ~2100 cm2/Vs. Due to the relatively high carrier density, the Quantum Hall Effect was observed only for high filling factors up to 14 T. However, clear Shubnikov-de-Hass oscillations were observed, indicating that the random carrier scattering due to impurities or defects is minimal in the EG film grown with metal plate capping.

1Supported by NRF in South Korea (2014M2B2A9031944)