Mechanical Properties of Polymeric Nanocomposites with Liquid Inclusions

HEYI LIANG, ZHEN CAO, ANDREY DOBRYNIN, Univ of Akron —

We study mechanical properties of polymeric nanocomposites of liquid inclusions in network matrix using molecular dynamics simulations and analytical calculations. The shear modulus of nanocomposite is shown to be a non-monotonic function of the elastocapillary number $\gamma_{SL}/(G_N R)$, where γ_{SL} is the interfacial energy network/liquid interface, G_N is the shear modulus of network and R is the initial size of liquid inclusion. First, in the range of elastocapillary numbers, $\gamma_{SL}/(G_N R) << 1$, the composite shear modulus increases with increasing this parameter value. In this interval of elastocapillary numbers, a liquid inclusion softens the network such that the composite modulus $G_{comp} < G_N$. This is in agreement with the classical Eshelby theory. However, for elastocapillary numbers $\gamma_{SL}/(G_N R) \approx 1$, the liquid inclusions reinforces the network, $G_{comp} > G_N$. In this range of parameters the surface energy of the deformed liquid inclusions strengthens the composite. When the elastocapillary number increases further, $\gamma_{SL}/(G_N R) >> 1$, the interfacial energy of network/liquid interface dominates the mechanical response of the composite resulting in composite weakening. Analysis of the elongation ratio of the liquid inclusion shows that it decreases with increasing elastocapillary number $\gamma_{SL}/(G_N R)$. The classical Eshelby’s theory of inclusions fails to explain this phenomenon. We develop a new linear elasticity model of this class of nanocomposite materials capable to explain this unusual mechanical response of nanocomposite materials.

1NSF DMR-1409710

Heyi Liang
Univ of Akron

Date submitted: 06 Nov 2015

Electronic form version 1.4