Charge reorganization in LaMnO$_3$/LaNiO$_3$ superlattice interfaces

FEDERICO IORI, ALEXANDRE GLOTER, Université Paris Sud - CNRS, UNRAVEL PROJECT TEAM, STEM GROUP TEAM — Functional properties of oxide heterostructures can recently be controlled and tuned through the electronic and structural mismatch at the interface. Artificial superlattices thin film can thus present complex magnetic structure at the interface different from their corresponding bulk building blocks. In this scenario when an antiferromagnetic bulk LMO and the paramagnetic bulk LNO are combined in thin filmssuperlattices, LaMnO$_3$/LaNiO$_3$, strong exchange bias, new metal-insulator transition or antiferromagnetic order at the interface appear. In this work we study by ab initio Density Functional Theory how the induced magnetic moments in LNO films in LMO/LMO (111)-oriented can lead to charge transfer and reorganization at the interface among the Ni and Mn metal ions for different periodicities of the superlattices (3/3, 5/5, 7/7) and how it is possible to control them through atomic intermixing at the interface.