Type-II Dirac cones as unified topological origin of the exotic electronic properties of WTe$_2$1 LUKAS MUECHLER, Dept. of Chemistry, Princeton University, ARIS ALEXANDRADINATA, Dept. of Physics, Yale University, TITUS NEUPERT, Princeton Center for Theoretical Science, ROBERTO CAR, Dept. of Chemistry, Princeton University — WTe$_2$ is a recently discovered layered material with remarkable electronic properties. Transport measurements show an extremely large non-saturating magnetoresistance (MR) with mobilities as high as 167 000 cm2/Vs at 2 K. Furthermore, recent photoemission experiments discovered circular dichroism in the bulk band structure. We propose a unified explanation for these exotic observations by relating key properties of the bulk electronic structure to that of the mono- and bi-layer material. In particular, we demonstrate that the monolayer is a novel type-II Dirac semimetal in absence of spin-orbit coupling, with Dirac cones that are sufficiently anisotropic to simultaneously harbor electron and hole pockets. The band structure can be characterized by a new $Z_2 \times Z_2$ topological invariant defined through non-Abelian Wilson loops. We develop a tight-binding model for the mono- and bilayer of WTe$_2$ based on Wannier functions from \textit{ab-inito} calculations and extend our findings to the iso-structural compounds MoTe$_2$ and ZrI$_2$.

1LM and RC are supported by the DOE grant DE-FG02-05ER46201

Lukas Muechler
Dept. of Chemistry, Princeton University

Date submitted: 06 Nov 2015

Electronic form version 1.4