Simulated synthesis of lithium manganese oxide nanostructures and their characterisation.

PHUTI NGOEPE, SYLVIA LEDWABA, University of Limpopo, Sovenga, 0727, South Africa., DEAN SAYLE, University of Kent, Canterbury, CT2 7NZ, UK — Simulated amorphisation recrystallization methods, are now routinely used to generate models of various nano-architectures for metal oxides with complex microstructural details [1]. Nano-architectures, i.e. nano- sphere, sheet, porous and bulk, associated with the Li-Mn-O ternary were synthesised from amorphous spinel nanosphere. The resulting crystallised nanostructures are characterised from visual images, radial distribution functions, XRDs and simulated microstructures. An analysis of microstructures and simulated X-ray diffractions reveals the presence of the layered \(\text{Li}_2\text{MnO}_3 \) and spinel \(\text{LiMn}_2\text{O}_4 \) together with a wide variety of defects, including grain boundaries and ion vacancies. [1] T.X.T. Sayle, R.R. Maphanga, P. E. Ngoepe and D. C. Sayle, J. Am. Chem. Soc., 131 (2009), 6161-6173

1Acknowledgement support from the National Research Fundation, Pretoria