MAR16-2015-005840

Abstract for an Invited Paper for the MAR16 Meeting of the American Physical Society

The many faces of order-by-disorder in rare-earth pyrochlore magnets MICHEL J P GINGRAS, University of Waterloo

Order-by-disorder (ObD) is a concept of central importance in the field of frustrated magnetism. Saddled with large accidental degeneracies, a subset of states, those that support the largest quantum and/or thermal fluctuations, may be selected to form true long-range order. More formally, one often begins describing a system in terms of some order parameter m with the low-energy description framed in terms of an effective action $\Gamma(m)$. In each ObD scenario, one starts from an artificial limit where there is an accidental degeneracy; that is the effective action at this point, $\Gamma_0(m)$, has an accidental symmetry. One may then view ObD phenomena as cases where the corrections to $\Gamma_0(m)$ arise through some form of fluctuation corrections, may they be thermal, quantum or virtual, towards an enlarged higher energy Hilbert space. In the rare-earth pyrochlore oxides, of formula $R_2M_2O_7$, the trivalent magnetic rare-earth ions R^{3+} (e.g R = Gd, Er, Yb; M = Ti, Sn is non-magnetic) reside on a three-dimensional pyrochlore lattice of corner-sharing tetrahedra. This architecture is prone to a high degree of magnetic frustration, with the $R_2M_2O_7$ pyrochlore materials having been found over the past twenty years to display a gamut of exotic phenomena. In this talk, I will discuss three such phenomena: (i) the intermediate partially-ordered multiple-k state between 0.7K and 1K in the Gd₂Ti₂O₇ Heisenberg antiferromagnet ¹, (ii) the ordered ψ_2 state selection in the XY $\text{Er}_2\text{Ti}_2O_7$ antiferromagnet ² and (iii) the puzzling high sample sensitivity of the Yb₂Ti₂O₇ "quantum spin ice" candidate ³. I will argue that in all three cases, some form of fluctuation corrections to their simplest $\Gamma_0(m)$ description play a significant role in the state selection and experimentally observed behaviors.

 ${}^{1} \text{ PRL } \mathbf{114}, 130601 \ (2015) \\ {}^{2} \text{ arXiv:} 1510.04292 \\ {}^{3} \text{ arXiv:} 1505.05499$