Abstract Submitted for the MAR16 Meeting of The American Physical Society

Electronic Structure of Epitaxial Thin Films of the Transparent Conducting Oxide La:BaSnO₃ Measured By In-Situ Angle-Resolved Photoemission Spectroscopy EDWARD LOCHOCKI, HANJONG PAIK, Cornell University, MASAKI UCHIDA, University of Tokyo, DARRELL SCHLOM, KYLE SHEN, Cornell University — Lanthanum-doped barium stannate (La:BaSnO₃) is a transparent conducting oxide where single crystals have exhibited unusually high mobility and oxygen stability. Here we present in-situ angle-resolved photoemission (ARPES) measurements of La:BaSnO₃ epitaxial films that were co-deposited onto lattice-matched rare-earth scandate substrates by molecular-beam epitaxy (MBE). Density functional theory (DFT) calculations agree well with the observed valence bands and predict a parabolic conduction band. However, the features observed near the Fermi energy (E_F) are non-dispersive yet localized in momentum space. This unusual appearance may be the result of quasi-localized charge carriers or outof-plane momentum broadening. Over long measurement periods, we also observe changes to the valence band and near- E_F feature that bear a strong resemblance to the beam-induced two-dimensional electron gases previously reported in SrTiO₃ and KTaO₃. The origin of these unexpected phenomena and their relationship to the structural and transport properties of these films will be discussed.

> Edward Lochocki Cornell University

Date submitted: 06 Nov 2015 Electronic form version 1.4