First Principle Studies of Electromechanical Properties in Mn-Doped BaTiO$_3$1 HIROYUKI TAKENAKA, Carnegie Institution for Science, Washington, DC, USA, R.E. COHEN, Carnegie Institution of Washington, Washington, DC, US, Department für Geo-und Umweltwissenschaften, Ludwig-Maximilians-Universitaet, Munich, Germany — We are performing density functional calculations to elucidate the electromechanical properties for Mn-doped BaTiO$_3$ with an oxygen vacancy, applying electric field perpendicular to polarization directions. We find that local dipole switching and lattice changes take place at 3MV/m. Spontaneous polarization along x is 0.251 C/m2 and c/a ratio changes from 1.021 to 1.000. This indicates that coercive field of Mn-doped BaTiO$_3$ increases as were experimentally reported since our results for pure BaTiO$_3$ exhibit onset of the switching and changes at 0.8 MV/m. We report our computational dielectric constant and strain as a function of electric field for Mn-doped BaTiO$_3$.

1This work is supported by ONR and the ERC Advanced Grant ToMCaT.