Abstract Submitted for the MAR16 Meeting of The American Physical Society

Tuning band gap of monolayer and bilayer SnS2 by strain effect and external electric field : A first principles calculations¹ ABEERA RAH-MAN, YOUNG-HAN SHIN, University of Ulsan — Recently many efforts have been paid to two-dimensional layered metal dichalcogenides (LMDs). Among them MoS_2 has become a prototype LMD, and recent studies show surprising and rich new physics emerging in other van der Waals materials such as layered SnS_2 [1-4]. SnS_2 is a semiconducting earth-abundant material and Sn is a group IV element replacing the transition metal in MoS_2 . SnS_2 shows new possibilities in various potential applications. However, the knowledge on basic properties of layered SnS_2 is still not well understood. In this study, we consider two types of structures; 1T with P3m1(164) space group and 1H with $P6_3/mmc$ (194) space group. Our first principles calculations show that the 1T structure for SnS_2 is more stable than the 1H structure whereas latter is more stable for MoS_2 . Moreover, in contrast to MoS_2 , SnS_2 shows an indirect band gap both for 1T and 1H structures while 1T MoS_2 is metallic and 1H has a direct band gap. We also study strain effect in the range of 0-10% on the band structure for monolayer and bilayer SnS₂ (both for 1T and 1H structures).We find significant change in their band gaps. We also investigate the bilayer SnS_2 with and without out-of-plane stress.

¹This research was supported by Brain Korea 21 Plus Program and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2014M3A7B4049367, NRF-2014R1A2A1A1105089).

> Young-Han Shin University of Ulsan

Date submitted: 06 Nov 2015

Electronic form version 1.4