Abstract Submitted for the MAR16 Meeting of The American Physical Society

Hexagonal BC₃ as a Robust Electrode Material for Li, Na, and K Ion Batteries¹ RAJENDRA JOSHI, Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA, BURAK OZDEMIR, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA, JUAN PERALTA, VERONICA BARONE, Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA — We propose hexagonal BC₃ as a robust electrode material for Li, Na, and K ion batteries based on first-principles density functional theory calculations. We show that, by intercalating Li, Na, and K in BC₃, it is possible to form Li_{1.5}BC₃, Na₁BC₃, and K_{1.5}BC₃ which correspond to a high theoretical capacity of 858 mA h/g, 572 mA h/g, 858 mA h/g, respectively. In addition, this material presents small open circuit voltage variations of 0.49, 0.12, and 0.16 V when used as electrode for Li, Na, and K ion batteries, respectively.

¹NSF CBET-1335944, NSF DMR-0906617, DOE DE-FG02-10ER16203

Rajendra

Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI,

Date submitted: 06 Nov 2015

Electronic form version 1.4