Abstract Submitted for the MAR16 Meeting of The American Physical Society

Regio regularity effects on chain mobility and entanglement for poly(3-hexylthiophene)¹ RENXUAN XIE, ENRIQUE GOMEZ, Department of Chemical Engineering, Penn State University at University Park, RALPH COLBY, Department of Materials Science and Engineering, Penn State University at University Park — Poly(3-hexylthiophene-2,5-diyl) (P3HT) is a conjugated polymer that can serve as the active layer in a variety of electronic devices. However, its glass transition temperature (T_{α}) and entanglement molecular weight (M_e) are still in dispute. These parameters are essential for estimating the density of tie chains, which are hypothesized to limit the bulk charge transport. A wide range of molecular weights of both regiorandom (RRa) and regioregular (RRe) P3HT were studied by oscillatory shear rheology. Coupled with the molecular weight distribution from GPC, M_e was extracted by fitting the linear viscoelastic data of multiple MW samples using BoB software. Furthermore, two T_{α} s were identified for both RRe and RRa P3HT. T_{α} corresponds to the segmental motion and follows Flory-Fox equation well for various MWs with 2 C <T $_{\alpha}$ <14 C, yielding high MW limit of T $_{\alpha\infty}$ = 21 C. RRe has a larger M_e than RRa, which might originate from their different $T_{\alpha PE}$ corresponding to the side chain packing. So, further investigation on their packing lengths via dilute solution light scattering will be crucial to understand entanglement in these semiflexible polymers.

¹National Science Foundation

Renxuan Xie Department of Chemical Engineering, Penn State University at University Park

Date submitted: 06 Nov 2015 Electronic form version 1.4