Abstract Submitted
for the MAR16 Meeting of
The American Physical Society

Field induced phase transition in layered honeycomb spin system
α-RuCl$_3$ studied by thermal conductivity1 IAN LEAHY, ALEX BORNSTEIN,
University of Colorado, Boulder, CO 80309, KWANG-YONG CHOI, Chung-Ang
University, Seoul, South Korea, MINHYEA LEE, University of Colorado, Boulder,
CO 80309 — α-RuCl$_3$, a quasi two-dimensional honeycomb lattice is known
to be a candidate material to realize the Heisenberg-Kitaev spin model of a highly
anisotropic bond-dependent exchange interaction. We investigate in-plane thermal
conductivity (κ) as a function of temperature (T) and in-plane applied field (H).
At $H = 0$, the onset of a strong increase in κ marks the spontaneous long range or-
dering temperature, $T_c = 6.5$K, corresponding to zigzag antiferromagnetic ordering.
A broad peak appearing below T_c in κ was found to be suppressed significantly as
H increases up to $\approx 7T$, implying the system undergoes a field-induced transition
from ordered to a new spin-disordered state analogous to the transverse-field Ising
model. Further increasing H above $7.1T$, the large field seems to begin polarizing
spins thus increasing the phonon mean free path, resulting in a significant rise in
κ. This tendency is clearly shown in the field dependence of κ below T_c, which has
a pronounced minimum at $H_{\text{min}} = 7.1T$. We will discuss our scaling analysis to
characterize this field-induced phase transition and compare to the transverse-field
Ising spin system.

1Work at the University of Colorado was supported by the US DOE Basic Energy
Sciences under Award No. DE-SC0006888

Ian Leahy
University of Colorado, Boulder, CO 80309

Date submitted: 06 Nov 2015

Electronic form version 1.4