Ubiquitous Magnetic Excitations in the Ytterbium Pyrochlores
ALANNAH HALLAS, JONATHAN GAUDET, McMaster University, NICHOLAS BUTCH, NIST Center for Neutron Research, MAKOTO TACHIBANA, National Institute for Materials Science, RAFAEL FREITAS, Universidade de Sao Paulo, CHRIS WIEBE, University of Winnipeg, GRAEME LUKE, BRUCE GAULIN, McMaster University — The ytterbium pyrochlores, Yb$_2$B$_2$O$_7$ (B = Sn, Ti, Ge) are well described in terms of S$_{\text{eff}}$ =1/2 quantum spins with local XY anisotropy, decorating the cubic pyrochlore lattice and interacting via anisotropic exchange. While structurally only the non-magnetic B-site cation, and hence, primarily the lattice parameter, is changing across the series Yb$_2$B$_2$O$_7$ (B = Sn, Ti, Ge), a range of magnetic behavior is observed. The low temperature magnetism in Yb$_2$Ti$_2$O$_7$ and Yb$_2$Sn$_2$O$_7$ has ferromagnetic character. Conversely, Yb$_2$Ge$_2$O$_7$ displays an antiferromagnetically ordered Neel state at low temperatures. We present a comparative analysis of the spin dynamic properties of these three systems using inelastic neutron scattering. While the static properties of the ytterbium pyrochlores are distinct from one another, we find a ubiquitous character to the spin dynamics. The inelastic scattering for each of these ytterbium pyrochlores show a gapless continuum of spin excitations, that tends to resemble over-damped ferromagnetic spin waves at low Q. Furthermore, the specific heat for each of these materials follows a common form with a broad, high-temperature anomaly followed by a sharp low-temperature anomaly. We find that the dynamic properties correlate strongly with the broad specific heat anomaly but remain unchanged across the sharp, low temperature specific heat anomaly.

Alannah Hallas
McMaster University