Folding of Polymer Chains in Early Stage of Crystallization

SHICHEN YUAN, TOSHIKAZU MIYOSHI, Univ of Akron — Understanding the structural formation of long polymer chains in the early stage of crystallization is one of the long-standing problems in polymer science. Using solid state NMR, we investigated chain trajectory of *isotactic* polypropylene in the mesomorphic nanodomains formed via rapid and deep quenching. Comparison of experimental and simulated $^{13}\text{C}^{13}\text{C}$ Double Quantum (DQ) buildup curves demonstrated that instead of random re-entry models and solidification models, individual chains in the mesomorphic form iPP adopt adjacent reentry sequences with an average folding number of $<n> = 3-4$ (assuming an adjacent re-entry fraction of $<F>$ of 100%) during mesomorphic formation process via nucleation and growth in the early stage.

1This work was financially supported by the National Science Foundation (Grant DMR-1105829 and 1408855) and startup funds from the UA.