Experimental Equation of State of Hafnium Metal to 210 GPa

YOGESH VOHRA, JEFFREY MONTGOMERY, SPENCER SMITH, GEORGIY TSOI, University of Alabama at Birmingham — The equation of state of hafnium metal has been measured using a platinum pressure marker to 210 GPa. Beveled diamonds with 35 micron central flats were used to compress a sample consisting of a mixture of platinum and hafnium that was packed with 6 nm diamond powder. It was hoped that this geometry would provide an alternative method of creating a second-stage pressure region to reach multi-megabar pressures. Powder diffraction patterns were collected across the high-pressure region using an x-ray beam collimated to 1x2 microns in a grid with a spacing of 1 micron. At the highest loads, a pressure gradient of 90 GPa was observed across the sample. This gradient allows for the construction of an equation of state over this range from data collected in only 3 minutes of synchrotron x-ray time. A new analysis program suite employing a measurement of spectral overlap has been developed to identify the multiple structures present, fit lattice parameters, and analyze the newly available gradient information.

This work was supported by the Department of Energy (DOE) National Nuclear Security Administration under grant number DE-NA0002014.