Abstract Submitted for the MAR16 Meeting of The American Physical Society

Transmission Electron Microscopy and First Principle Studies Investigating Intercalation Phenomenon Of Vanadium Pentoxide (V_2O_5) nanowire cathode¹ ARIJITA MUKHERJEE, UIC, HASTI ASAYESH AR-DAKANI, MTU, TANGHONG YI, CHEON JUNG KIM, UIC, JUSTIN AN-DREWS, SARBAJIT BANERJEE, Texas AM, JORDI CABANA, REZA S YASSAR, ROBERT F KLIE, UIC, JCESR COLLABORATION — Vanadium $Pentoxide(V_2O_5)$ is an attractive intercalation compound due to its characteristic layered structure from weak vanadium-oxygen bonding which enables the intercalation of ions between the layers. Here, we will discuss an in-situ transmission electron microscopy and electron energy-loss spectroscopy approach investigating lithiation of orthorhombic α -V₂O₅ nanowires where the center of the nanowire undergoes a transformation to γ -Li₂V₂O₅ phase. Since V₂O₅ has also been predicted as a potential cathode host for magnesium ion intercalation, we also investigate Mg intercalation in α -V₂O₅ nanowire and determine if our reaction pathway leads to the formation of ε -Mg_{0.5}V₂O₅ phase, as predicted by density functional theory calculations. In-situ Li and Mg intercalation experiments into the new tunnel structured ζ - V₂O₅ nanowires will also be presented and the resulting phases will be compared with theoretical predictions.

¹This work is supported by Joint Center for Energy Storage Research(JCESR)

Arijita Mukherjee UIC

Date submitted: 06 Nov 2015

Electronic form version 1.4