ARPES studies of van der Waals heterostructure1 ERYIN WANG, State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, XIAOBO LU, Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, GUORUI CHEN, State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, ALEXEI V. FEDOROV, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, YUANBO ZHANG, State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, GUANGYU ZHANG, Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, SHUYUN ZHOU, State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing — Van der Waals heterostructures are a novel class of “materials by design” which are formed by stacking different two-dimensional crystals together via van der Waals interaction. The periodic potential by the Moiré superlattice can be used as a control knob for tuning the electronic properties of two dimensional materials and can induce various novel quantum phenomena. Here we report direct electronic structure studies the of a model van der Waals heterostructure using angle-resolved photoemission spectroscopy (ARPES).

1This work is supported by the National Natural Science Foundation of China and Ministry of Education of China.

Eryin Wang
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University

Date submitted: 06 Nov 2015