Collisional Model of the Stopping Force of 3D Granular Impact
CACEY STEVENS, JONATHAN BARES, ROBERT BEHRINGER, Department of Physics, Duke University — A dense granular packing can cause a free-falling intruding object to come to an abrupt stop as its momentum is dissipated to the grains. An empirical force law has been widely accepted to describe this process; it characterizes the stopping force as the sum of depth-dependent friction and velocity-dependent inertial drag. However, a complete interpretation of this force, incorporating grain-scale interactions during impact, remains unresolved. Here, the momentum transfer is proposed to occur through sporadic collisions with clusters of high force-carrying grains at the intruder’s surface. To test this model in 3D impact experiments, we determine the forces acting on an intruder decelerating through a dense granular medium using high-speed video of its trajectory. By attaching a rod to the intruder and observing its motion from perpendicular angles, we obtain all translational and rotational dynamics. We vary the shape of the impeding object to infer intruder-grain interactions from its consequent path. As a result, we connect the inertial drag to the effect of intruder shape and rotation based on the collisional model.

1Supported by Duke University Provost’s Postdoctoral Program and NASA grant NNX15AD38G
3Y. Takehara et al EPL 92, 44003 (2010), A. Clark et al, PRE 89, 012201 (2014)

Cacey Stevens
Department of Physics, Duke University

Date submitted: 06 Nov 2015

Electronic form version 1.4