Magneto-Inter-Subband Oscillations in GaAs quantum wells with three populated subbands placed in tilted magnetic fields.1 WILLIAM MAYER, JESSE KANTER, SERGEY VITKALOV, City College of New York, CUNY Graduate Center, ALEXEY BYKOV, Institute of Semiconductor Physics, Novosibirsk, Russia — The effect of tilted magnetic fields on magnetotransport is studied in GaAs quantum wells with three populated subbands. In perpendicular fields magneto-intersubband oscillations (MISO) are observed. These oscillations obey the relation $\Delta_{ij}=(E_i-E_j)=k\omega_c$, where E_i is the energy of the bottom of i-th subband and k is an integer. MISO are periodic in the inverse magnetic field and show three frequencies $f_{ij} \sim \Delta_{ij}$. Due to $E_1, E_2 << E_3$ two MISO oscillate at high frequencies (HF) demonstrating a beat pattern with the beat frequency $f_b = (f_{13}-f_{23})/2 \sim \Delta_{12}$. With increasing tilt angle at small magnetic fields, $\omega_c < \Delta_{12}$, the periodicity of HF-MISO changes indicating a change in the subband gap Δ_{12}. The dependence of Δ_{12} on the parallel magnetic field is found to be in a good agreement with existing theory. At larger parallel magnetic fields and $\omega_c > \Delta_{12}$, the high frequency beating disappears leaving only HF-MISO with single frequency $f=(f_{13}+f_{23})/2$. It indicates a magnetic breakdown between the lower two subbands. Investigations of the 2D electron system in the regime of the magnetic breakdown are presented.

1This work was supported by the National Science Foundation (DMR 1104503), the Russian Foundation for Basic Research (project no.14-02-01158) and the Ministry of Education and Science of the Russian Federation.

Sergey Vitkalov
City College of New York, CUNY Graduate Center

Date submitted: 06 Nov 2015