The Upper Bound on Solar Power Conversion Efficiency Through Photonic Engineering

YUNLU XU, JEREMY MUNDAY, Univ of Maryland-College Park — The power conversion efficiency is a key parameter by which different photovoltaic devices are compared. The maximum value can be calculated under steady-state conditions where the photon flux absorbed by the device equals the outgoing flux of particles (also known as the principle of detailed balance). The photonic engineering of a solar cell offers a new alternative for boosting efficiency. We show that, for an ideally photonic engineered solar cell, its efficiency is subject to an upper bound dictated by a generalized form of detailed balance equation where nano-concentration is taken into account. Results under realistic operating conditions and recent experimental studies will also be discussed.

1Authors acknowledge the University of Maryland for startup funds to initiate this project and support by the National Science Foundation under Grant CBET-1335857