Abstract Submitted for the MAR16 Meeting of The American Physical Society

Electronic Transport Properties of New 2-D Materials GeH and $NaSn_2As_2^1$ BIN HE, Department of Mechanical Engineering, the Ohio State University, Columbus, Ohio USA 43210, NICHOLAS CULTRARA, MAXX AR-GUILLA, JOSHUA GOLDBERGER, Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH 43210, JOSEPH HEREMANS, Department of Mechanical Engineering, the Ohio State University, Columbus, Ohio USA 43210 — 2-D materials potentially have superior thermoelectric properties compared to traditional 3-D materials due to their layered structure. Here we present electrical and thermoelectric transport properties of 2 types of 2-D materials, GeH and $NaSn_2As_2$. GeH is a graphane analog which is prepared using chemical exfoliation of CaGe₂ crystals. Intrinsic GeH is proven to be a highly resistive material at room temperature. Resistance and Seebeck coefficient of Ga doped GeH are measured in a cryostat with a gating voltage varying from -100V to 100V. NaSn₂As₂ is another 2-D system, with Na atom embedded between nearly-2D Sn-As layers. Unlike GeH, $NaSn_2As_2$ is a metal based of Hall measurements, with p-type behavior, and with van der Pauw resistances on the order of $5m\Omega/square$. Thermoelectric transport properties of $NaSn_2As_2$ will be reported.

¹This work is support by the NSF EFRI-2DARE project EFRI-1433467

Bin He Department of Mechanical Engineering, the Ohio State University, Columbus, Ohio USA 43210

Date submitted: 06 Nov 2015

Electronic form version 1.4