Tuning the trion photoluminescence polarization in monolayer WS$_2$.

A.T. HANBICKI, K.M. MCCREARY, M. CURRIE, Naval Research Laboratory, G. KIOSEOGLOU, University of Crete, C.S. HELLBERG, A.L. FRIEDMAN, B.T. JONKER, Naval Research Laboratory — Monolayer transition metal dichalcogenides (TMDs) such as MoS$_2$ or WS$_2$ are semiconductors with degenerate, yet inequivalent k-points labeled K and K that define the direct gap. The valence band maximum in each valley has only one spin state of opposite sense for K and K. Consequently, one can selectively populate each valley independently with circularly polarized light, and determine the valley populations via the polarization of emitted light. Optical emission is dominated by neutral and charged exciton (trion) features, and changes in emitted polarization provide insight into the fundamental processes of intervalley scattering. We prepare single-layer WS$_2$ films such that the photoluminescence is from the negatively charged trion and observe a room temperature optical polarization in excess of 40.

This work was supported by core programs at NRL and the NRL Nanoscience Institute, and by the Air Force Office of Scientific Research AOARD 14IOA018-134141.