Ambipolar transport in the field-suppressed superconducting state of quasi-one-dimensional Li$_{0.9}$Mo$_6$O$_{17}$

JOSHUA L. COHN, University of Miami, CARLOS A. M. DOS SANTOS, Escola de Engenharia de Lorena - USP, Brazil, JOHN J. NEUMEIER, Montana State University — We present resistivity, Hall, Seebeck, and Nernst coefficient measurements in the range 0.4 $K \leq T \leq 20$ K on single crystals of the quasi-one-dimensional (Q1D) metal, Li$_{0.9}$Mo$_6$O$_{17}$ with current along the Q1D metallic chains. At temperatures below the nominal superconducting transition temperature ($T_c = 2$ K), a transition from hole-like ($\mu_0 H < 1$ T) to electron-like ($\mu_0 H \geq 2$ T) behavior is evidenced in the magnetotransport coefficients. Possible insights from these results into the nature of the mysterious density-wave ordera,b responsible for the upturn in resistivity below ~ 25 K will be discussed.

1Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-12ER46888, Univ. Miami), the National Science Foundation (DMR-0907036, Mont. St. Univ.), and in Lorena by the CNPq (308162/2013-7) and FAPESP (2009/54001-2).