Infrared magneto-transmission studies of the 2DEGs in (CdMn)Te and CdTe Quantum wells1 IMTIAZ TANVEER, University at Buffalo, SUNY, MACIEJ WIATER, GRZEGORZ KARCZEWSKI, TOMASZ WOJTOWICZ, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland, B.D. MCCOMBE, University at Buffalo, SUNY — We are probing quantum hall ferromagnetism (QHF) in the 2DEG of Modulation-doped quantum wells (QWs) in the (CdMn)Te/(CdMg)Te (with 1.5% Mn) heterostructure system by THz cyclotron resonance. Samples with CdTe QWs are also studied. Both structures have the same QW width (30 nm), very similar electron densities in the wells 3.0×10^{11} cm$^{-2}$ and mobilities of 450,000 (CdTe) and 66,000 cm2/Vs ((CdMn)Te) at 1.6 K. The electron effective masses (m^*/m_0) from cyclotron resonance measurements at 5K are 0.110 \pm 0.001 for CdTe and 0.114 \pm 0.003 for (CdMn)Te . Linear fits to the resonance positions in frequency vs. field give small non-zero intercepts which may result from small non-parabolicity or bound magneto-plasmon effects. The FWHM linewidths from Lorentzian fits of the transmission minima are ~ 2 cm$^{-1}$ (CdTe) and ~ 8 cm$^{-1}$ ((CdMn)Te). Our present focus is on detailed studies of the CR positions and linewidths in the magnetic field region around the cusp-like behavior in the R_{xx} oscillations, which indicates the presence of the QHF state. The field position of this state is tuned via electron density in the QWs varied incrementally by a photon-dose method with an in-situ green LED.

1Work at UB was supported in part by the Office of the Provost, and work in Poland was supported in part by the National Science Centre through grant DEC-2012/06/A/ST3/00247.

Imtiaz Tanveer
University at Buffalo, SUNY

Date submitted: 06 Nov 2015

Electronic form version 1.4