Classification of interacting fermionic phases by dimensional reduction

RAQUEL QUEIROZ, ESLAM KHALAF, Max Planck Institute for Solid State Physics, ADY STERN, Weizmann Institute of Science — Topological phases of noninteracting fermions are classified in each spatial dimension according to their symmetry class, in a periodic way [1]. When including interactions, however, this classification can be modified. It was first shown that in one-dimensional chains, the $Z$ classification of the BDI symmetry class is reduced to $Z_8$ [2]. That is, every group of 8 Majorana states at the edge of a BDI chain can be gapped out through a suitable interaction, despite preserving its fundamental symmetries. In this work, we present a dimensional reduction argument to derive the role of interactions in the classification of fermionic symmetry protected topological phases. For symmetry classes classified by a $Z$ invariant in odd dimensions, we propose a general $n$-particle quartic interaction that renders the system topologically trivial. We argue that all phases characterized by a topological invariant smaller than $n$ in the noninteracting limit remain topologically distinct once interactions are included, thereby reducing the noninteracting $Z$ classification to $Z_n$. [1] Ryu, S., et. al., NJP 12, 065010 (2010); [2] Fidkowski, L. and Kitaev, A., PRB 81, 134509 (2010).

Raquel Queiroz
Max Planck Institute for Solid State Physics

Date submitted: 06 Nov 2015