Abstract Submitted for the MAR16 Meeting of The American Physical Society

OPTICAL SPECTROSCOPY OF THE M₂ AND T PHASES OF VANADIUM DIOXIDE T.J. HUFFMAN, M.M. QAZILBASH, C. HEN-DRIKS, E.J. WALTER, H. KRAKAUER, College of William and Mary, JOON-SEOK YOON, HONGLYOUL JU, Yonsei University, R. SMITH, G.L. CARR, Brookhaven National Laboratory — The salient feature of the familiar structural transition that accompanies the metal-insulator transition in bulk VO_2 is a pairing of all of the vanadium ions in the M_1 insulating phase. This pairing has long been thought critical to the emergence of insulating behavior. However, there exist two less familiar insulating states, M₂ and T. These phases notably exhibit distinctly different V-V pairing. In the M_2 phase, only half of the vanadium ions exhibit pairing while the other half carry local spin 1/2 magnetic moments and are equally spaced in quasi-one dimensional chains. The T phase has two types of inequivalent vanadium chains, each consisting of V-V pairs but with different spacing between V ions in the pairs. The M_1 phase has been studied extensively with optical spectroscopy. By studying the two less familiar insulating phases, M_2 and T, one can investigate how changes in V-V pairing affect the properties of the VO_2 insulating state. We performed infrared and optical spectroscopy on the M_2 and T phases in the same sample. Despite a clear change in the lattice structure, the inter-band transitions are insensitive to changes in the V-V pairing. This result conclusively establishes that intra-atomic Coulomb repulsion between electrons provides the dominant contribution to the energy gap in all insulating phases of VO_2 . Our work highlights the necessity of considering the M_2 and T phases of VO_2 in future experimental and theoretical research.

> T.J. Huffman College of William and Mary

Date submitted: 06 Nov 2015

Electronic form version 1.4